Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

Random Search
PrevUpHomeNext

Synopsis

#include <boost/math/optimization/random_search.hpp>

namespace boost::math::optimization {

template <typename ArgumentContainer> struct random_search_parameters {
    using Real = typename ArgumentContainer::value_type;
    ArgumentContainer lower_bounds;
    ArgumentContainer upper_bounds;
    size_t max_function_calls = 0;
    ArgumentContainer const * initial_guess = nullptr;
};

template <typename ArgumentContainer, class Func, class URBG>
ArgumentContainer random_search(const Func cost_function,
                                random_search_parameters<ArgumentContainer> const &params,
                                URBG &gen,
                                std::invoke_result_t<Func, ArgumentContainer> value_to_reach
                                  = std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
                                std::atomic<bool> *cancellation = nullptr,
                                std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr,
                                std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr);

} // namespaces

The random_search function searches for a global minimum of a function. There is no special sauce to this algorithm-it merely blasts function calls over threads. It's existence is justified by the "No free lunch" theorem in optimization, which "establishes that for any algorithm, any elevated performance over one class of problems is offset by performance over another class." In practice, it is not clear that the conditions of the NFL theorem holds, and on test cases, random_search is slower and less accurate than (say) differential evolution, jSO, and CMA-ES. However, it is often the case that rapid convergence is not the goal: For example, we often want to spend some time exploring the cost function surface before moving to a faster converging algorithm. In addition, random search is embarrassingly parallel, which allows us to avoid Amdahl's law-induced performance problems.

Parameters

  • lower_bounds: A container representing the lower bounds of the optimization space along each dimension. The .size() of the bounds should return the dimension of the problem.
  • upper_bounds: A container representing the upper bounds of the optimization space along each dimension. It should have the same size of lower_bounds, and each element should be >= the corresponding element of lower_bounds.
  • max_function_calls: Defaults to 10000*threads.
  • initial_guess: An optional guess for where we should start looking for solutions. This is provided for consistency with other optimization functions-it's not particularly useful for this function.

The function

template <typename ArgumentContainer, class Func, class URBG>
ArgumentContainer random_search(const Func cost_function,
                                random_search_parameters<ArgumentContainer> const &params,
                                URBG &gen,
                                std::invoke_result_t<Func, ArgumentContainer> value_to_reach
                                  = std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
                                std::atomic<bool> *cancellation = nullptr,
                                std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr,
                                std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr)

Parameters:

  • cost_function: The cost function to be minimized.
  • params: The parameters to the algorithm as described above.
  • gen: A uniform random bit generator, like std::mt19937_64.
  • value_to_reach: An optional value that, if reached, stops the optimization. This is the most robust way to terminate the calculation, but in most cases the optimal value of the cost function is unknown. If it is, use it! Physical considerations can often be used to find optimal values for cost functions.
  • cancellation: An optional atomic boolean to allow the user to stop the computation and gracefully return the best result found up to that point. N.B.: Cancellation is not immediate; the in-progress generation finishes.
  • current_minimum_cost: An optional atomic variable to store the current minimum cost during optimization. This allows developers to (e.g.) plot the progress of the minimization over time and in conjunction with the cancellation argument allow halting the computation when the progress stagnates.
  • queries: An optional vector to store intermediate results during optimization. This is useful for debugging and perhaps volume rendering of the objective function after the calculation is complete.

Returns:

The ArgumentContainer corresponding to the minimum cost found by the optimization.

Examples

An example exhibiting graceful cancellation and progress observability can be studied in random_search_example.cpp.

References
  • D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April 1997, doi: 10.1109/4235.585893.

PrevUpHomeNext